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Abstract

This paper presents a randomized polynomial time algorithm to nearly minimize a linear
function over an up-monotone convex set in the positive orthant given only by a member-
ship oracle. Our original motivation for this is a stochastic optimization problem called the
component commonality problem in the literature.

1 INTRODUCTION.

This paper presents a randomized polynomial time algorithm to nearly minimize a linear function

over an up-monotone convex set (i.e., a convex set with the property that if x belongs to the set

and y is component wise greater than or equal to x, then y belongs to the set too) in the positive

orthant given only by a membership oracle (i.e., an oracle which given a point x in space, returns

the correct answer to the question of whether x is in the convex set). We also assume that we

are given some point xi in the convex set to start with. Our original motivation for this is a

stochastic optimization problem called the component commonality problem [9]. Our randomized

algorithm is based on a random walk. While similar algorithms are used for other optimization

problems, for example, in simulated annealing, this seems to be the first provably polynomial time

algorithm to achieve near-optimality with high probability.

The Component Commonality (CC) problem in discrete time arises as follows. There are m

products (indexed by j) with correlated random demands ((dI, ... , dm) with distribution H(·)
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and density h(·)) in any period, that require some or all of n components (indexed by i) in the

ratio Uij. The key feature in this setting is that as many of the n components are shared by many

products, and as the assembly time is small relative to the procurement time of the components,

the assembly is done after the demand has realized, thus taking advantage of commonality of

components. The CC problem, then, is to find the quantities qi of each component (at unit cost

Ci > O) that should be on stock at the beginning of each period so as to minimize total costs of

purchase while satisfying the demands with probability at least a given fraction,. Formally, for

a stock level q = (ql, q2, ... qn), define F(q) = {d: 2::3=1 uijdj :::;qi for i = 1,2 ... n} to be the set

of demands that can be met with q on stock. Let

g(q) = r h(d)
JF(q)

be the probability that we can meet the demands with stock level q. Then the problem is :
n

Minimize L ciqi : g (q) 2:: ,.
i=1

With some general assumption on the density h(·), (for example quasi-concavity or log-concavity,

cf section 3 ) it can be seen that the feasible set of stock levels (i.e., {q : g (q) 2:: ,}) is convex.

The CC problem falls into a class of problems called probabilistic constrained programming

(PCP), a type of stochastic program. Our methods apply to other problems as well in this

class; we have given only the example of the CC problem here. Previous efforts to solve this

class of problems have been by non-linear programming (NLP) methods. A standard non-linear

programming approach would involve as subroutines: (i) checking if the constraint g(q) 2:: , is

valid and (ii) estimating the gradient of g(q). Theoretically, we may also apply algorithms like

the ellipsoid algorithm. In this case we need a "separation subroutine" which given an x says

whether it is feasible and if not returns a hyperplane separating x from the feasible set. It can be

seen that the task of this subroutine is essentially (ii).

The first task (i) may be solved by sampling, if we assume that we can draw samples according

to the density h(·); in practice, , is likely to be close to 1 (in any case at least 1/2) and so the

number of samples required is not enormous. However, the second task is considerably more

onerous since to compute each of the n directional derivatives, we need very accurate values of g(q).
Because of these and other difficulties, there are no provable polynomial run-time bounds known

for gradient descent based algorithms. (Wets [13] discusses these and other related difficulties in

greater detail.)

Using well-known methods from Stochastic Optimization, it will be easy to see that the CC

problem can be formulated as the problem of minimizing a linear function over an up-monotone
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convex set given by a membership oracle. This is done in section 3. To check whether a particular

q is a feasible stock level, one needs only to answer a question of the form (i), so a membership

oracle is easily available. [This property that questions of the form (i), i.e., membership queries,

are easier to answer than queries of the form (ii) is shared by several Stochastic Optimization

problems. This is the reason for the interest in this modeL]

2 ALGORITHM OUTLINE AND TIME BOUNDS.

Using the membership oracle, we approximately minimize a linear function over an up-monotone

convex feasible set int the positive orthant as follows. We may assume a suitable upper bound an

the variables so we can enclose this feasible region in a rectangle (in n dimensions). At the heart

of our approach is a positive real-valued logarithmically concave function F on the rectangle with

the following properties: (1) the integral of F over a region consisting of near-optimal solutions is

at least a constant fraction of the integral of F over the whole feasible set, and (2) the integral of

F over the feasible set is at least a constant fraction of the integral of F over the entire rectangle.

Thus, if we pick a "random sample" from the rectangle with probability density proportional to F

(we refer to this throughout as "sam pIing according to F"), we would get a near-optimal solutian

with constant probability; this probability can be boosted by repeated sampling. Our algorithm,

then, is simply a choice of F (determined by two parameters Œ, a damping factor favoring feasible

points, and ß, a bias favoring points with better objective values) and a method to obtain a sample

according to F. We show that a certain biased random walk (on the uniform grid of size S, to be

determined), starting from a feasible solution (xi), is indeed able to pick a random sample from

the feasible set with probability (approximately) proportional to F. While it is relatively easy

to argue that in the steady state, this random walk picks a sample with density proportional to

F, it is nontrivial to show that this steady state is approached in a polynomial number of steps.

To accomplish this central result, we draw on recently developed results in the theory of rapidly

mixing Markov Chains as well as on random walks in convex sets [5] , [1]. The latter paper gives a

technique for sampling from log-concave distributions which we use here, although, we have tried

to make this paper self-contained by giving as many details as possible. Our random walk can be

executed with only local knowledge of F as well as a membership (not a separation) oracle for

the feasible set.

Given an instance of the problem (a membership oracle for J{ and objective function c> O),

E > O (relative error), f'¿ > O (failure probability) and an initial feasible point xi, the algorithm

succeeds with probability at least 1 - f'¿ in finding a qalg E Rn which is feasible and such that
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C· qalg :::; (1 + E)(C· qOpt). Rather than come within E of the optimal in one long random walk,

we develop an adaptive algorithm which improves the feasible solution in stages (by iteratively

refining the gap between a known feasible solution and a probabilistic pointwise lower bound lower

bound L on optimal cost).

Each stage begins with a feasible solution xi and a probabilistic "lower bound" L on hand

where if there is a feasible x with C . x < L, then the algorithm has failed. (We will of course

ensure that the probability of failure is low.) We refer to C· xi - L as the "gap" (at the beginning

of the stage). At the end of the stage, we have a new lower bound and a new feasible solution;

we ensure that the gap at the end of a stage is at most 1/2 of the gap at the beginning. We stop

when the gap is at most E times the value of the cost lower bound. The algorithm is described in

detail in figure 1 and justified in section 7, but we give here a short verbal description.

Each stage proceeds as follows: the feasible set is enclosed in a rectangular solid. We devise

a log-concave function F on the rectangle with the two properties described above. [The function

F has two components: a "penalty" (called the gauge function in what follows) for going out of

the feasible set which increases as we become "more infeasible" and a bias (drift) which favors

low objective function value. In some vague sense, this is similar to Lagrangian relaxation with

both feasibility and optimality represented by one function.]

Then we discretize by dividing the rectangle into small cubes. We perform a random walk on

the cubes with transition probabilities depending on F. It will be easy to see that the steady state

probabilities of this random walk will be proportional to F. We will also show fast convergence

to the steady state, so that after a polynomial number of steps, we are "close" to the steady state

probabilities.

After doing the random walk for this number of steps, one of the following two scenarios occurs:

(i) We have found a feasible solution whose value cuts down the gap by a factor of at least

1/2. In this case, we replace our old feasible solution by this and go to the next stage.

(ii) Otherwise, we have (probabilistic) proof of a greater lower bound and we go to the next

stage with this new lower bound (again cutting the gap down by a factor of 1/2).

Although F has been devised accurately to have the desired properties, several errors are

introduced in the sampling procedure which are tackled in the paper. There are errors due to

discretizing into small cubes, due to the inexact computation of the gauge function and due to

the fact that the lower bounds are only probabilistic. The management of these errors is the main

focus of section 5.

Our main result is two bounds on the running time of the algorithm. [The running time is
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bounded above by the minimum of the two.]

If 1/ is the ratio of the value of the given initial feasible solution to the optimal value, E IS

the required relative error, 1 - f'¿ the required success probability and n, the dimension of the

up-monotone convex feasible set K, the first bound is

If in addition, we are given xl > Osuch that Vy E K, we have xl :::; y and an XU such that there is

an optimal solution z with z :::;XU (so we can replace K by K n {x : x :::;XU}), then we also have

a bound

The rest of the paper is organized as follows. Section 3 notes that the CC problem falls into

the framework of up-monotone convex sets and has some general remarks. Section 4 constructs

the appropriate log concave and gauge functions that are to be used in each stage of the algorithm.

Section 5 describes the random walk to be performed at any stage of the adaptive algorithm, and

contains the analysis of the errors introduced due to discretization, gauge function approximation

and walking for finite number of steps. In section 6, we find a bound on the spectral gap of the

Markov chain, which allows us to use results on rapid mixing to provide a bound on the number

of steps required in any stage. In section 7, we prove the adaptive algorithm's correctness and run

time, and present two variants and prove their run times. Proofs for certain lemmas have been

moved to the appendix.

3 THE COMPONENT COMMONALITY PROBLEM.

The problem was described in detail in the Introduction. If U denotes the matrix of the Uij 's

there, let y = y(d) = Ud. Under the assumption that h(·) is log-concave, it is easy to see that y

has a log-concave density. Let D denote the density of the y. Let µD denote the corresponding

measure. (So for any measurable set S, µD (S) = Is D.) Then the feasible set K of stock-levels

can be expressed as

K = {x E Rn: µD(dom(x)) 2:: ,}

where dam (x) is {y : y < x}. It is easy to show that K is convex ([13]). It is also clearly

up-monotone.
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3.1 General Remarks

While we do assume that a membership oracle is available for K, we do not assume that a sepa-

ration oracle is available. By a theorem of Yudin and NemirovskiÍ it is known that membership

and separation are polynomial time equivalent for convex programming problems like this one [7].

But the conversion has a large exponent, and the approach here is more efficient.

Instead of computing the integral each time the membership oracle is called, we could instead

pick m samples yI, y2, ... ym according to D at the outset and then for each query x to the

membership oracle for K, say yes to the query if and only if for at least ,m of the yi, we have

x 2:: yi. It is easy to show by standard techniques that for m large enough, this suffices as a

an approximate test of membership in K. We do not go into the details here. Also, in the

actual situation, either the yi may be available from past data or if one hypothesizes a particular

log-concave density D, we may draw samples according to the density using the techniques of [1].
One may be tempted to solve the discrete problem: given m points yI, y2, ... ym in Rn, a

fraction " a positive vector c and a real number (, does there exist an x E Rn such that x 2:: yi

is satisfied for at least ,m different i 's and we also have c . x :::;( ? In this generality, we show

(in the appendix) that the problem is NP-hard. So one needs to exploit the special nature of K,

namely its convexity.

For an NLP approach to the CC problem, see [9] and references provided there.

4 THE FUNCTION F: BIAS AND DAMPING.

Let K be an up-monotone convex set contained in the positive orthant of Rn, xi a known

feasible point and c > O the cost vector in the linear objective function. For real numbers

L 2:: O, T > O, we define a log-concave distribution B(L,T) on Rn such that if L :::;inf {c· y I y E K}

then µB(L,T) ({y E K I C· y:::; inf {c· y I y E K} + T})/µB(L,T) (Rn) 2:: ~ and show how to use the

membership oracle for K to approximately sample from this distribution in an efficient manner.

Let xl be such that Vy E K, xl :::;y and let XU be such that Vy E K, 3z E K such that c·z :::;C·y

and z:::; XU. Note that by the up-monotone property, XU E K. If xl and XU are not explicitly

given we can take xl = O and XU such that = (I/Ci) 2::i=1 CiX{. Let KL = K n {y I C· y 2:: L}
(we will later further restrict our attention to a "rectangle" that is roughly {x I xl :::;x :::;xu} ).

Definition 1 For any real L > O, T > O let "the tip" be the set x E KL such that c . x <
inf {c . y I y E K L } + T.
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Let 1/J(KL,xU) (x) denote the infimum of all real positive numbers À such that XU + X-tU E KL.

This is the dilation of KL about XU needed to contain x and is called the gauge function associated

with KL. When the context is clear we will suppress the subscripts and use 1/J instead of 1/J(KL'XU).

F will be of the form

(1)

where ß and Œ are positive reals to be determined later. We take F( x) as the unnormalized

density function for B(L,T), a log-concave distribution on {x E Rn I x :::;XU}. Note that e-ßc.x is

the bias (in favoring better objective values), and e-amaX(,p(KL,XU)(x)-I,O) is the function to damp

this bias in regions that are infeasible.

The selection of Œ and ß is done in two stages: (1) we first find ß such that at least half of

the probability mass in the body (according to the density B(L,T)) is in "the tip", and then (2)

find Œ such that at least half the mass in the entire rectangle is in the body.

4.1 Getting in the tip.

For x in K L, the distri bu tian F is a function of the c . x only (since 1/J (x) :::;1).

Lemma 1 If L 2:: O,T > O and ß 2:: if, we have

J F > (1/2) r F.
"the tip" - JKL

Proof Let c* = inf {c· y I y E KL}, z E KL such that c· z = c* and A* be the intersection of the

hyperplane c· x = c* + T and K. Clearly, the convexity of KL implies that IKLn{x:c.x:::;c*+T} Fis

not increased if we replace KL n {x : c· x :::;c*+T} by the convex hull of z and A *. Also, replacing

KL n {x : c· x 2:: c* + T} by the truncated cone formed by intersecting {x : c· x 2:: c* + T} with

the minimal pointed cone with vertex z containing A * cannot decrease I F over this set. So it

suffices to prove the lemma with KL equal to the infinite cone. Then the ratio of integrals in the

lemma is
C*+T(À *)n-l ßÀ

Ic* ---¥- area(A*) e- d À Icc:+T (À - c*r-1 e-ßÀ d À

Icc:" (>-Tc* r-1
area(A *) e-ßÀ d À Icc:" (À - c*r-

1
e-ßÀ d À

We change variables (and consult standard integral tables) to get:

IoT Àn-le-ßÀ d À

10= Àn-le-ßÀ d À
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By picking ß = if the ratio is 1 - e-n 2::~:61~,which is 2:: ~ for n 2:: 1, so any

n
ß2::T, (2)

will do.

D

4.2 Staying in the body.

We now show that at least ~ of the mass is in the body KL, which would imply that at least ~

of the mass of B(L,T) is in the tip (the near optimal feasible region), for a suitable choice of 0:.

Let ÖKL be the set of y in the boundary of KL. For any ( > O all of KL can be covered

by a collection C of disjoint cones such that for each cone r E C, we have Ilx - yl12 :::; ( for

x,yErnöKL.

Now, if less than half of the mass according to B(L,T) is in KL then there must be a cone

r E C such that less than half the mass according to B(L,T) restricted to r is in rn KL. By the

arbitrary nature of ( we see the same must hold for some "infinitely" thin cone. Chose such a

cone and let y be the point at which the cone intersects öK and set Ào = Ilxu - y112.

Lemma 2 Suppose

o: 2:: max (3ß(c. - L) + 3n - 5, n(e2 + 1) + 1) (3)

Then the mass of any infinitesimal cone outside of KL can be shown to be no more than the mass

of the same cone inside KL , thus yielding a ratio of feasible to total of at least ~.

Proof For the proof of this lemma only, it will be convenient to multiply masses by eßc.xu; so

for any set S, we mean by the mass of S, the quantity eßc.
xu Is F. The mass of the cone outside

KL is given by:

(= Àn-1l(c,xu-c,y) ÀÀo-a(À~ -1) d À
JÀo

À31= tn-1eß(c.xu-c.y)t-a(t-l) dt

< À31= e(t-l)(n-l)eß(c.xu-c.y)t-a(t-l) dt

À3eß(c,x
u
-c,y) /(0: - ß(c· - c· y) - (n - 1)).
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For the mass of the ray inside KL we will break into two cases depending if ß(c· XU - C· y) is

> 2 or not. The mass of the ray inside KL is at least

1
ÀO

Àn-1eß À~ (c.xu-c.y) d À

À311 tn-leßt(c.xu-c.y) dt.

We now consider the two cases.

Case 1: ß(c· XU - C· y) 2:: 2: An integration by parts gives the mass of the ray inside KL equals

>

--::-:-__ À.:e...O_----:-(eß(c.XU-c.y) _ (n _ 1) [I tn-2eßt(c.xu-c.y) dt)
ß(c·xu-c·y) Jo

Ào (eß(c,xu-c,y) _ (n _ 1) [I e(t-l)(n-2)eßt(c.xu-c.y) dt)
ß(c·xu-c·y) Jo

Àoeß(c,xu-c,y) (1 _ (n - 1) )
ß(c· XU - C· y) ß(c· XU - C· y) + n - 2 .>

The ratio of mass inside KL to outside is at least

ß(c· XU - C· y) - 1 o: - ß(c· XU - C· y) - n + 1

ß(c·xu-c·y)+n-2 ß(c·xu-c·y)

Since ß(c· XU - C· y) 2:: 2 and o: 2:: 3ß(c· XU - C· y) + 3n - 5, the ratio is at least 1.

Case 2: ß(c· XU - C· y) < 2: The mass of the ray inside KL is at least

yielding a ratio of
o: - ß(c· XU - C· y) - (n - 1)

neß (c.xu - c.y)

which, by our assumption on ß, is at least

0:-2-(n-1)
ne2

and since o: 2:: n( e2 + 1) + 1 is at least 1.

D

Summarizing, we have the following:
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Theorem 1 For any L 2:: O, T > O and F as in (1) with 0:, ß satisfying

ß >
n
T

o: > max (3ß(c. - L) + 3n - 5, n(e2 + 1) + 1)

then

J F > (1/4) [ F.
"the tip" - JRn

5 SAMPLING PROCEDURE.

We now show how to approximately sample according to F (namely, B(L,T)). First, we discretize

the rectangle xl :::;x :::;xu. Next, we find an approximation for F in regions not in KL. Third,

we devise the transition matrix of a Markov chain which realizes the desired random walk.

Let Ei denote the unit vector directed in the ith coordinate direction. Let Cs (p) denote the

cube of side 2S centered at p.

We will divide the rectangle xl :::;x :::;XU into small cubes of side 2S where S will be specified

later.

def {XERn I x;( EZn, Cs(X)n{YERn Ixl:::;y:::;xu}#0}
U Cs(x)

xEU

(4)

(5)

U

J def

We will take a random walk on the graph whose vertices are the set U of centers of cubes. Also,

notice that even though there may be x E U such that x t xl we do have x + sf 2:: xl for all

x E U. It is important to notice that the lco diameter of J is no more that Ilxu - xlII co + 4S.

Many of the lemmas require that S not be too large with respect to xu, xi, o: and ß. To

formalize this we will can S "fine" if we have

mini(xi - x{) 1 ),
S:::;min( 70: '7vnßCi (6)

and we will often invoke the following result.

u f
Proposition 1 If S is "fine" and 0:, ß meet the conditions of Theorem 1, then Xi ~xi 2:: 7((e2 +
l)n + 1) for all i.
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5.1 Discretization and Approximate Sampling using Membership Oracle.

Errors due to two sources need to be analyzed here. One source of error is because we discretize

the region, and approximate the integral of F(x) over a small rectangle by F(p)*(volume of the

rectangle), where p is the center of the rectangle. The second source of error is in computing the

gauge function for points outside the feasible region. This is because in practice we may only be

able to calculate F(p), an approximation for F(p) (using the membership oracle and bisection

methods).

5.1.1 Estimates because of Discretization.

In this section (and in section 6) we will need for every p E U that the integral of Faver

any rectangle C centered at p and approximately contained in Cs(p) is well approximated by

F (p) Vol (C) .1

More precisely: For every p E J we need to determine a lower bound on p such that for

some continuous monotone decreasing function ç such that ç(O) = O and all r¡ 2:: O in some open

neighborhood of O: if C is any rectangular region with center p contained in CS+1)(p) n J then

p(l - 0(1)) (vo:(C) L F) :::;F(p) :::;(p(l - 0(1)))-1 (vo:(C) L F) . (7)

We will also need a lower bound on a such that

(8)

for all x E K, i E {l·· ·n} and all IÀI :::; 2S.

The lemma below summarizes the errors induced here. The proof is in Appendix B.

Lemma 3 (7) and (8) hold with

a > e -2aS /(mini (xi-x{)) e -2ßSllclloo

e-as /(mini (xi-x{))
p >

(9)

(10)

¡The approximate containment, characterized by a parameter r¡, is technical point used only to facilitate the

proof of Lemma 4.
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5.1.2 Estimates due to gauge function errors.

Let F(x) be an approximation for F(x) calculated using only x and the membership oracle. In the

feasible region, F = F. In the infeasible region, F may not equal F because the dilation cannot

be computed exactly. Note that for our analysis this must be a deterministic approximation and

not one obtained by sampling; to be clear, we always calculate the same value for F(x). This is

calculated to a relative accuracy of 1 ± 1\ (i.e. ~~F(x) :::;F(x) :::;~iF(x).)

To calculate F(x) to a relative accuracy of 1/11, it is sufficient to calculate the gauge function

to an absolute error of ±In(I~/ll). To achieve this, it is sufficient to calculate the distance of the

point in K on the line segment from x to XU that is farthest from XU to an absolute accuracy of
In(12/11)(mini(xU-xf))2 Th· bd· kl b b·· h· b h·

II fil" . IS can e one very qUlC y y IsectlOn searc usmg our mem ers Ip
2 XU-x 2a

oracle.

5.2 The Markov Chain.

For each x E U let N (x) be the "neighborhood" of x which is the set of all vertices in U that

differ from x in exactly one coordinate by ±2S. The transition probabilities P(x, y) will be :

{

I. (1 !J.1il)
2n mm 'F(x)

P(x, y) = ~- 2::zEN(x) P(x, z)

Y E N(x)

x=y (11)

y ti- N(x)

where F is a deterministic estimate for F. It is easy to see that P(x, y) induces a time

reversible irreducible aperiodic Markov chain with steady state probabilities 7f(.) proportional to

F(.). We will show, in the next section, that after a sufficient number of steps, we are fairly close

to the steady state. Let 7f be the unique steady state distribution for our chain (approximately

B(L,T)). But first we show that in the steady state there is a reasonable chance of observing states

corresponding to cubes covering the near optimal feasible portions of KL.

Theorem 2 Let 7f(.) be the steady state probabilities of the above Markov chain, then if Œ, ß
satisfy the conditions of Theorem 1 and S is "fine" and "the tip" is contained in J then

1L 7f(x) 2:: '6.
xEu,có(x)n "the tip"f-0
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Proof Accounting for the errors due to discretization and in gauge function computation, 7f(x)
(= DF(x)) satisfies

D(l- ~)p (( ~)n ( F):::; 7f(x) :::; D(l + ~)p-l (( ~)n ( F) . (12)
11 2u Jcó(x) 11 2u Jcs(x)

where D = (2::xEU F) -1.

Now, since the "tip" probability is at least ~ (by construction of F), we have the steady state

probability of the cubes covering the tip is:

L 7f(x) 2:: ~ X (1 - rr)p
xEu,có(x)n"the tip"f-0 3 X (1+ U)p-l + 1 X (1- 1\)p·

S is fine, so:
ŒS 1

<-
mini(xi - x{) - 7

(13)

and

(14)

and the theorem follows from inequality (10).

D

6 SPECTRAL GAP OF THE MARKOV CHAIN.

In this section, we determine how many steps are necessary for the Markov chain to "mix". We

need to find a relationship between the number of steps walked and how close we are to the steady

state. For this we need a central result of Sinclair and Jerrum [12]. We also need several well-know

facts that are collected in [3]. Let X be the set of states in our Markov chain. For x, y E X, let

pt (x, y) be the probability that starting in state x we are in state y after t steps. As before, let 7f

be the unique steady state distribution for our chain (approximately B(L,T)). Recall that P(x, y)
induces a time reversible irreducible aperiodic Markov chain; however, it is not strongly aperiodic

[12]. This is because we do not insist that we have P( x, x) 2:: ~ for all x. Because of this, we not

only need an upper bound for the second largest eigenvalue but also need a lower bound on the

smallest eigenvalue [3].

We will use Proposition 3 from [3] which says:

L Ipt(x, y) - 7f(Y) I :::;
yEX

1- 7f ( x) (x*) t
7f(x)

13



where, X* = max(Xl' IXml), where XI is the second largest eigenvalue and Xm is the smallest

eigenvalue of P, the matrix of transition probabilities.

We find an upper bound on XI by appealing to a result of Sinclair and Jerrum's [12], which
'2 A

is quoted also as Proposition 6 of [3], namely, XI :::; 1 - ~ , where cP is a lower bound on the

"conductance" (defined in section 6.1) of the Markov chain. We find a lower bound on the

conductance in section 6.1 below. A lower bound on Xm is obtained by appealing to Proposition

2 of [3], described in detail in section 6.2.

We also prove that (see sections 6.1-6.2) IXml :::;1 - 1? Thus, we have:

1 ¿P tL Ipt(x, y) - 7f(y)1 :::;y'7f(x) (1- 2) .
yEX

What we wish to do is find t so that ¿YEX Ipt(x, y) - 7f(y)1 is under 1/12. Recall that by

Theorem 2, the states of our Markov chain corresponding to cubes that cover the "tip" have mass

at least 1/6. Thus, we will have a chance of at least 1/6 - 1/12 = 1/12 that a random walk of

t steps will end in one of the states corresponding to a cube covering the tip (i.e. close to the

optimum). For this, it suffices to have

21n(12) -In(7f(x))
¿p (15)

We now wish to prove a lower bound on 7f(x), for feasible x, so that we can apply the above

inequality.

We assume that the walk is started deterministicly at xi. Since we know that at least half

of the mass of B(L,T) is in the body and the highest possible stationary probability of a cube

intersecting f{L is at most eß(c.(xf+2Sí)-L)7f(xi) and there are at most TIi=1 r xi2~xj + 11 states in

f{L (or even U), we know

plO/lI 1 < 7f(xi)eß(c.(xf+2Sí)-L) rrn[Xi - x~ + 11
p-112/11 2 - i=1 2S

which yields
7f(xi) 2:: p2 5eß(L-c.(xf +2sí))

12TI
n r~ 1,=1 2S + 1

but we will just use the easier form:

5p2eß(L-c.(xf +2sí))

r
"xu-xlll 1n·12 2S ÇX) + 1

(16)

14



Plugging in, we get

Theorem 3 If the conditions of Theorem 2 are met then running the above Markov chain for at

least

21n(12) + In (#s-) + ß(c· (xi + 2Sf) - L) + nln Gllxu~;III09 + Il)
¿p (17)

is sufficient to ensure with probability at least 112, the chain will stop at a state x such that x + sf
is feasible and within cost T + 2S IIcl11of the optimal point.

Although at the end of Section 4, we had shown that the steady state probability of being in

the tip is at least i, now we only guarantee the probability that the sample is in the tip at the

end of t steps is (at least) /2. Thus, the three sources of errors-discretization, approximation of

the gauge function, walking for t steps-reduce the tip probability from ~ to /2.

6.1 Conductance.

For any V ç U and V = U \ V, and

Vs = U CS(x)
xEV

Vs = U CS(x)
xEV

We define the conductance of V by

_ ¿XEv,YEvnN(x) 7f(x)P(x, y) _ ¿XEv,YEvnN(x) min(F(x), F(y))
¢V - min(7f(V),7f(V)) - 2n min(F(V), F(V)) . (18)

The conductance of the chain defined by

¢ = min ¢v.vcu (19)

We use an "isoperimetric inequality" to find a lower bound for ¢. An isoperimetric inequality

was proved in [5]; a simpler proof of a stronger inequality was given in [11]. The inequality was

generalized to the case of log-concave functions in [1]. We use here a version of this from [4]. If

dist(x, y) = Ilx - yll where II . II is an arbitrary norm on Rn and diam(K) = maxx,yEK dist(x, y)
we have the following theorem from [4]:

15



Theorem 4 Let J ç Rn be a convex body and F a log-concave function defined on int J and µ

the induced measure. Let SI, S2 ç J, and t :::;dist(SI, S2) and d 2:: diam(J). If B = J \ (SI U S2),

then
. 1

mm(µ(SI), µ(S2)) :::;"2(d/t)µ(B).

We will use dist(x, y) = Ilx - yllco.

Lemma 4 If S is fine then ¢ 2:: II S III = ¢ (say).3n xU-x
00

(20)

Proof Let r¡ be a small positive real that will tend to zero. Let Bs be the r¡/2 neighborhood of

Vsnvs and Bs(x, y) be the r¡/2 neighborhood of Cs(x) nCs(y). Let SI, S2 and B be Vs \Bs, Vs \Bs

and Bs n J respectively.

From inequalities (7), (8), (9), (10) and (12), it is clear that

L min(F(x), F(y))
xEv,YEvnN(x)

similarly min (F (V) , F (V) )

From the isoperimetric inequality,

> 10 L min(F(x), F(y))
11 _

xEv,YEvnN(x)

> lOa L F (X + y)
11 _ 2

xEv,YEvnN(x)

> 10a ""' p 1 { F
11 ~ (2S + )n-l J¡xEv,YEvnN(x) r¡ r¡ Bó(x,y)

> 10 __ a,-p_--,- { F
11 r¡(2S + r¡)n-l JBó

> 10 ap { F
11 r¡(2S + r¡)n-l JB

< 12 1 min ({ F, ( F)
11 ap(2S)n Jvó Jvó

< 12 1 min ({ F, ( F)
llap(2S-r¡)n Js¡ JS2

Combining this with the inequalities above and taking the limit r¡ ---+ O we get:

210a2p2S
¢> 11

- ~in(llxu - xilico + 4S)·

Since S is fine (from inequalities (10),(9))

(21 )

(22)
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D

6.2 Comparison of XI and IXml.
Here we find a lower bound for Xm, by the canonical odd path argument outlined in Proposition

2 of [3].

Let

(23)

For each state x let Wx be the smallest non-negative integer such that P(x+2wxSEI, x+2wxSE1) 2::
ß (this is always possible since P(a, a) 2:: 2~ 2:: ß on the border of our bounding region). Let ax

be the 2wx + 1 step path of from x to x given by:

"self loop"
, .A ,

.:f f---7 x + 2SE1 f---7 x + 4SE1 f---7 ••• x + 2wxSE1 f---7 x + 2wxSE1 f---7 ••• x + 4SE1 f---7 x + 2SE1 f---7 .:f

We will call ax "the canonical odd path for x".

Proposition 6 of [3] states for any selection of canonical odd paths we have Xm > -1 + ~,
where

def
max L Ilaxllp 7f(x),
(a,b) (b)ax3 a,

L _1 .
(a,b)EO"x 7f(a)P(a, b)

(24)

def (25)

To prove the bound for X*, we will show that IXm I is less than the upper bound for XI. From

the discussion above, it is sufficient to show the following.

Lemma 5 ¿ < ~2- ¢

Proof By our choice of paths, we have for any i :::;Wx - 1:

21n - ß :::;P(x + i2SEI, x + (i + 1)2SE1) <
P(x + (i + 1)2SEI, x + i2SE1) <

.1....
2n

.1....
2n

and by time reversibility

17



For any x we have,

Wx 1 1

Ilaxllp :::; 2 ~ 7f(x)(l- 2ßn)iUn _ ß) + 7f(x)(l- 2ßn)wxß

rx

U

-

XI 1~+1

< 2 L 1 1

7f(x)(l- 2ßn)iUn - ß) + rXJ2~x\ +11
7f(x)ß(l- 2ßn)

[
Xu - xl 1 2n 1< 2 1 1+1 + .

2S 7f(x) (1- r xJ~x\ + 212ßn) 7f(x)ß (1- r xJ~x\ + 112ßn)

i=1

Using Proposition 1 it is easy to show that

Continuing,

Because each edge can be used by at most r xJ~x\ + 11 canonical odd paths, we have

[
Xu Xl 1 ([XU Xl 1 3 )¿ < 1 - 1 + 1 1 - 1 + 1 6n + _ .

- 2S 2S 2ß (26)

The result now follows from Lemma 4, inequality (26) and Proposition 1.

D

7 DESCRIPTION AND ANALYSIS OF THE ALGORITHM.

Suppose we are given a feasible point xi, a relative accuracy goal (e) and a desired upper bound

on the probability that the algorithm fails (f'¿). Let 1/ be the ratio of C . xi to C· xopt. We assume

that without loss of generality, the problem has been rescaled so Ci = 1 for all i (Xi ---+ Cixi,

Ci ---+ £L = 1).c,

7.1 In the Worst Case.

Here, we assume that n 2:: 2 and e :::;1. We present the following algorithm:

18



Input: xi, E, ", c and a membership oracle for K.

rescale problem so c = f
xl +--- O

L+---O

(pointwise lower bound)

(probalistic cost lower bound)

(the best feasible solution observed)

while ¿iX{ - L > eL

+--- 2 ¿j xf ,i = 1 ... n (pointwise upper bound)
¿xl-L

T +--- 1 3) (~ of the current gap)

ß +--- 1f (objective function "bias")
7n2¿ xl

Œ +--- T" (gauge function gain)

S +--- 4~2 (step size)

r (1IOg2(1)l.±!.)1· . b ¿xl+Lrepeat logH-"E times or untIl ¿i xi est :::; 1 ~)

run the random walk of section 5 with the above parameters for the number of

steps prescribed in Theorem 3, let x be the

stopping point of the walk.

if x + sf feasible and ¿i(Xi + S) < ¿i xfest

then xbest +--- x + sf
endrepeat

'\' xl +L
if'\'. xbest > ~L.-, , 2

then L +--- '\'. xbest - T - 2nSL.-, ,

xi +--- xbest

endwhile

return xi

Figure 1: AlgorithmA.
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The analysis of AlgorithmA is fairly straight forward.

• It is easy to see that XU such that = Lj xf must dominate any optimal point.

• Each time we draw a sample according to Theorem (3) we have at least a chance of 112 that

it is feasible and within a cost of T + 2nS of the optimum. We have picked T and S such
L xl-L

that T + 2nS < ¡ ~J

• When the repeat loop terminates either

'\' xl +L
'\'. xbest < L.-¡ J or
L.-" - 2 '

enough samples have been drawn such that with confidence at least (1- "') 11og2(f)l+1

one of them was feasible and within distance T + 2nS of the optimum.

Either way, the distance from the new xi to the new L is no more than half of the old

distance.

• Thus, the outer while loop will run no more than llog2 (~)l times.

• Furthermore, we see the first time the algorithm alters the lower bound (it must establish

a lower bound to halt), we have L 2:: L2 x{ - T - 2nS 2:: 9 Li x{.

Therefore, the outer while loop will cycle no more than Ilog2(nl more times.

Thus the lower bound can be altered at most Ilog2(nl+ 1 times.
1

Since each lower bound alteration is correct with chance at least (1 - "') 11og2(f) l +1 we

see that they all are correct with odds at least 1 - "'.

Thus the algorithm fails with chance less than "'.

We must check that Œ, ß and S were picked correctly.

• ß clearly satisfies inequality (2).

• Assuming that n 2:: 2, we see that Œ satisfies inequality (3).

• It is easy to see that inequality (6) is satisfied.

• Invoking Lemma (4), ¢ 2:: 617~n3.

( ( 2))(6174)2n6 7+3.2n+nln 11~3n +2
• So t = o é steps are enough to draw a sample. Thus, each

(
n71og(.!!.))sample can be drawn in O ,,2 é steps.
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• Each step requires at most O (log (~)) membership queries to compute the gauge function.

So the total number of membership queries is

O (n 7 (lag (~)) 2 lag (~) lag (~) )

E2 '
(27)

which, if we ignore lesser log factors, can be thought of as O~ (n710g(:~ log(~) ) .

Remark: 1 With a new result of Frieze, Kannan and Polson that the algorithm outlined here

can have it's dependence on n brought down to n6 by performing the sampling walk in a bounding

sphere instead of a bounding box and estimating x* without introducing the idea of conductance.

7.2 With Advantageous Bounds.

Here we analyze the situation where good bounds xl, L and XU are known and attempt to lower

the dependence of the runtime on n. To do this meaningfully, all dot products (and norms other

than infinity) must be removed from the expressions as they hide n's. In this subsection, we work

out a bound on run time that explicitly shows all of the powers of n.

We still assume that the problem has been rescaled so Ci= 1 for all i (Xi ---+ cixi, Ci ---+ £i. = 1)c,

and that

. (U i) 1mmi Xi - Xi > - (28)
Ilxullco - mini x~

- 2

and min(xi) + min(xD > 211xi II co . (29), ,

This is easy to ensure by replacing with Ilxillco + Ilxullco and has the geometric interpretation

of making the problem "well rounded".

We notice that if E > ~ - 1 then xi is already a solution of the desired accuracy. This
illllliXi

and inequality (29) imply
. I

Ilxullco - mmi Xi > 2.
. I

E mmi Xi
(30)

Rather than the adaptive approach, first consider a sampling algorithm that comes within E

of optimal in one long walk:
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• We will chose ß to be at least ~6if instead of as stated in inequality (2). The ~6 is required

to guarantee that we get within T of the optimum instead of the T+2S IIcl11 we could expect

because of discretization. To guarantee this, we must show that léOmini x~ 2:: 2nS.

- So we set

ß- . I- lOEmmi xi

11
(31 )

and Œ = 5n(llxUllco - mini xD
Emini xl,

(32)

By inequality (30), this satisfies inequality (3).

Now setting

. I
S= Emmixi

70n
(33)

satisfies inequality (6), by inequality (28).

Clearly, we have 2nS :::;/OEmini x~.

So the 2S IIcl11 factor has been dealt with.

Now, by Lemma (4) and Theorem (3), we have

¢ =
. IEmmi Xi

t

Which, if we take the middle term of the sum to be dominant, is

(36)

steps.

We will call this algorithm AlgorithmB. AlgorithmB can then be repeated Iln~~fÎi2)l times

to amplify the chance of success to at least 1 - "'.

The dependence on IlxU~xlllt) can be improved by designing a new algorithm (AlgorithmC)
f..illllliXi

that runs AlgorithmB in stages like we did for AlgorithmA.

22



The analysis is as before and the run time comes out to

(37)

membership queries.

Appendices

A Proof of NP Completeness

Theorem 5 Given m points yI, y2, ... ym in Rn, a fraction " a positive vector c and a real

number (, deciding if there exist an x E Rn such that x 2::yi is satisfied for at least ,m different

's and c . x :::;( is NP complete.

Proof sketch: Let G = (V, E) be an undirected graph with vertices V = {1,2··· n} and

edges E. Given an integer k, the clique problem is: "does G have a complete induced subgraph

on some k vertices?" For each e E E let ye E Rn be the vector such that

Yi = { 1 vertex ~ is an endpoint of edge e

O otherwIse

Let c = f, , = (k - 1)k/2 and ß = k.

Let x be a solution to the above problem. WLOG assume x is a 0-1 vector and define

Gx = (Vx, Ex) to be the induced subgraph of G where Vx = {i E V I Xi 2::I}. We then have

IGxl = c·x and IExl = Idom(x)l. So we see that x such that c·x:::; k and Idom(x)l2:: k(k-1)/2

correspond precisely to induced subgraphs of G with :::; k vertices and 2:: k (k - 1)/2 edges: k-

cliques. D

B Errors Due to Discretization

For every p E J we need to determine a lower bound on p such that for some continuous monotone

decreasing function ç such that ç(O) = O and all r¡ 2:: O in some open neighborhood of o: if C is

any rectangular region with center p contained in CS+1J (p) n J then

p(l - ç(r¡)) (vo:(C) L F) :::;F(p) :::;(p(l - ç(r¡)))-1 (vo:(C) L F) . (38)

23



We will also need a lower bound on a such that

(39)

for all x E K, i E {l·· ·n} and all IÀI :::;2S.
For vectors a and b let ab be the vector (ab)i = aibi. To facilitate the analysis we break F

into its two constituent parts fand g where f(x) = e-a(maX(,p(KL,xU) (x)-I,O)), g(x) = e-ßc,x, and

F(x) = f(x)g(x).

a is easy to deal with when we apply the well known fact that a gauge function based on K

can fall no faster than one based on a convex subset of K (containing XU). To be precise we apply

Corollary 52 from [1] to get:

which implies
e-a(S+1J)/(mini(xi-x{)) f(x) :::;f(z) Vz E C (40)

and inequality 39 is satisfied with

(41 )

To get a lower bound on p we use the simple rule that for f, g 2:: O

min(J(x)) { g:::; ( fg:::; max(J) { g
xEC Jc Jc xEC Jc

and use inequality 40 to get the pointwise bounds on f. All that remains is to derive a lower

bound pi such that

(42)

We note that g is of the form g(x) = h(c·x) for some non-negative convex function h in the region

we are interested in and since C is symmetric about P we know that (from Jensen's inequality)

and any pi-I:::; 1 satisfies the right side of inequality 42.

To get the left side of inequality 42 we define

def
max PER I P + ÀEi E C}

{x E Rn Ilxi - CiPil :::;Ci3i Vi}D def
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and change variables to get:

1 1n -~- g.
TIi=12ci::::i D

Let µ(À) be the measure of the set

It is easy to see µ is differentiable and -µ/ (À) 2:: O for À E [O, c· 3]. We return to our integral

(using the estimate µ(À) - µ(À + dÀ) = -µ'(À)dÀ):

n 1 .';:;'. ¡e-3 -µ/(À) (e-ß(c'P+À) + e-ß(c'P-À)) d À
TIi=1 2c,~, Jo

g(p) rm -2,;:;, ¡e-3 cosh(ßÀ)µ'(À) d À
i=1 2c,~, Jo

g(p) rm -2,;:;, (COSh(ßÀ)µ(À) lî~~·3 - ß ¡e-3 sinh(ßÀ)µ(À) d À)
i=1 2c,~, Jo

g(p) n -2,;:;, (O _ TIi=12ci3i _ ß ¡e-3 sinh(ßÀ)µ(À) dÀ)
TIi=1 2c,~, 2 Jo

g(p) (1 + TIn 2ß,;:;, ¡e-3 sinh(À)µ(À) d À)
,=1 2c,~, Jo

By Theorem 2 of [8], we have µ(À) :::;(TIi=1 2Ci3i) e-À2 /(21Ic31ID. So continuing we have:

_1_ r g:::; g(p) (1 + 2ß ¡e-3 sinh(À)e-À2/(21Ic311~) d À)
Vol(C) Jc Jo

We need an upper bound for

2ß lc
.
3

sinh(À)e-À2/(21Ic311~) d À

which comes out to (by standard integral tables)

ß IIc3112 ~eß21Ic311~/2 (2erf (ß Ilc3112) + erf (c. 3 - ß IIC311;) _ erf (c. 3 + ß IIC311;))
V"2 v2 v2llc3112 v2llc3112

< yl2;ß IIc3112erf (ß 1~"2 ) eß21Ic311~/2

< yl2;ß(S + vnr¡) IIcl12erf (ß(S + ~r¡) IIcl12) eß2(S+vn1J)21Icll~/2

which for sufficiently small r¡ > O (and r¡ = O) is

:::;yl2;ßS IIcl12erf (ßS~"2) eß2S21Icll~/2(1+ 0(1))

combining this with our pointwise bound on f we get

e-as /(mini (xi-x{))
p > ----------,-,-..,.,.,....,.,---,-----

- 1 + yl2;ßS IIcl12erf (ßS~12 ) eß2S21Icll~/2
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